Error bound between monotone difference schemes and their modified equations
نویسندگان
چکیده
منابع مشابه
Error bound between monotone difference schemes and their modified equations
It is widely believed that if monotone difference schemes are applied to the linear convection equation with discontinuous initial data, then solutions of the monotone schemes are closer to solutions of their parabolic modified equations than that of the original convection equation. We will confirm the conjecture in this paper. It is well known that solutions of the monotone schemes and their ...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملOn Nonlocal Monotone Difference Schemes
We provide error analyses for explicit, implicit, and semi-implicit monotone finitedifference schemes on uniform meshes with nonlocal numerical fluxes. We are motivated by finite-difference discretizations of certain long-wave (Sobolev) regularizations of the conservation laws that explicitly add a dispersive term as well as a nonlinear dissipative term. We also develop certain relationships be...
متن کاملFinite Difference Schemes with Monotone Operators
where A : D(A) ⊆H →H , α : D(α) ⊆H →H , and β : D(β) ⊆H →H are maximal monotone operators in the real Hilbert space H (satisfying some specific properties), a, b are given elements in the domain D(A) of A, f ∈ L2(0,T ;H), and p,r : [0,T] → R are continuous functions, p(t) ≥ k > 0 for all t ∈ [0,T]. Particular cases of this problem were considered before in [9, 10, 12, 15, 16]. If p ≡ 1, r ≡ 0, ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2009
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-09-02306-0